

1

Lesson 3

Multiplexer (MUX)

Multiplexer (MUX), or Selector

- Selects one of the N inputs to connect it to the output
 - based on the value of a log₂*N*-bit control input called select
- Example: 2-to-1 MUX

S	D_1	D_0	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Multiplexer (MUX), or Selector (II)

- Selects one of the N inputs to connect it to the output
 - based on the value of a log₂*N*-bit control input called select
- Example: 2-to-1 MUX
- S=1
 - A AND 0 = 0
 - B AND 1 = B
 - B OR 0 = B

- S=0
 - A AND 1 = A
 - B AND 0 = 0
 - A OR 0 = A

Multiplexer (MUX), or Selector (III)

- The output C is always connected to either the input A or the input B
 - Output value depends on the value of the select line S

Example (10 min):

- Draw the schematic for a 4-input (4:1) MUX
 - Gate level: as a combination of basic AND, OR, NOT gates and simulate it in the <u>logic.ly</u>
 - Module level: As a combination of 2-input (2:1) MUXes

Aside: Logic Using Multiplexers

• Multiplexers can be used as lookup tables to perform logic functions

Figure 2.59 4:1 multiplexer implementation of two-input AND function

Aside: Logic Using Multiplexers (II)

• Multiplexers can be used as lookup tables to perform logic functions

Aside: Logic Using Multiplexers (III)

• Multiplexers can be used as lookup tables to perform logic functions

9

Aside: Logic Using Multiplexers (III)

• How to implement the same logic by 2X1 MUX?

2X1 Mux

Decoder

SDU 🎓

Decoder

- "Input pattern detector"
- n inputs and 2ⁿ outputs
- Exactly one of the outputs is 1 and all the rest are 0s
- The one output that is logically 1 is the output corresponding to the input pattern that the logic circuit is expected to detect
- Example: 2-to-4 decoder

<i>A</i> ₁	A_0	<i>Y</i> ₃	<i>Y</i> ₂	<i>Y</i> ₁	<i>Y</i> ₀
0	0	0 0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Decoder (I)

- n inputs and 2ⁿ outputs
- Exactly one of the outputs is 1 and all the rest are 0s
- The one output that is logically 1 is the output corresponding to the input pattern that the logic circuit is expected to detect

SDU 🎓

Decoder (II)

- The decoder is useful in determining how to interpret a bit pattern
 - It could be the address of a row in DRAM, that the processor intends to read from
 - It could be an instruction in the program and the processor has to decide what action to do! (based on *instruction opcode*)

MIC

Full Adder

SDU 🎸

Full Adder (I)

• Binary addition

- Similar to decimal addition
- From right to left
- One column at a time
- One sum and one carry bit
- Truth table of binary addition on one column of bits within two n-bit operands

$$\begin{array}{c}
a_{n-1}a_{n-2} \dots a_{1}a_{0} \\
b_{n-1}b_{n-2} \dots b_{1}b_{0} \\
C_{n}C_{n-1} \dots C_{1} \\
\hline
S_{n-1} \dots S_{1}S_{0}
\end{array}$$

ai	b i	carry _i	carry _{i+1}	S _i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

16

SDU

Full Adder (II)

- Binary addition
 - N 1-bit additions
 - SOP of 1-bit addition

$$\begin{array}{c}
a_{n-1}a_{n-2} \dots a_{1}a_{0} \\
b_{n-1}b_{n-2} \dots b_{1}b_{0} \\
C_{n}C_{n-1} \dots C_{1} \\
\hline
S_{n-1} \dots S_{1}S_{0}
\end{array}$$

ai	b i	carry _i	carry _{i+1}	S _i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

4-Bit Adder from Full Adders

- Creating a 4-bit adder out of 1-bit full adders
 - To add two 4-bit binary numbers A and B

Adder Design: Ripple Carry Adder

Delay propagation problem

Adder Design: Carry Lookahead Adder

ALU (Arithmetic Logic Unit)

ALU (Arithmetic Logic Unit)

- Combines a variety of arithmetic and logical operations into a single unit (that performs only one function at a time)
- Usually denoted with this symbol:

$F_{2:0}$	Function
000	A AND B
001	A OR B
010	A + B
011	not used
100	A AND \overline{B}
101	A OR \overline{B}
110	A – B
111	SLT

Example ALU (Arithmetic Logic Unit)

$F_{2:0}$	Function
000	A AND B
001	A OR B
010	A + B
011	not used
100	A AND \overline{B}
101	A OR B
110	A – B
111	SLT

Tri-State Buffer

Tri-State Buffer

- A tri-state buffer enables gating of different signals onto a wire
- Floating signal (Z): Signal that is not driven by any circuit
 - Open circuit, floating wire

Figure 2.40 Tristate buffer

Example: Use of Tri-State Buffers

- Imagine a wire connecting the CPU and memory
 - At any time only the CPU or the memory can place a value on the wire, both not both
 - You can have two tri-state buffers: one driven by CPU, the other memory; and ensure at most one is enabled at any time

Example Design with Tri-State Buffers

SDU **S**

Another Example

- Shared Bus is a common line between peripherals
- All of the devices connected with Tri-State Buffers
- When a device use the shared bus all other buffers are disconnected.

Multiplexer Using Tri-State Buffers

Figure 2.56 Multiplexer using tristate buffers

Karnaugh Maps (K-Maps)

Complex Cases

• One example $Cout = \overline{ABC} + A\overline{BC} + AB\overline{C} + AB\overline{C}$

- Problem
 - Easy to see how to apply Uniting Theorem...
 - Hard to know if you applied it in all the right places...
 - ...especially in a function of many more variables
- Question
 - Is there an easier way to find potential simplifications?
 - i.e., potential applications of Uniting Theorem...?
- Answer
 - Need an intrinsically geometric representation for Boolean f()
 - Something we can draw, see...

Karnaugh Map

- Karnaugh Map (K-map) method
 - K-map is an alternative method of representing the truth table that helps visualize adjacencies in up to 6 dimensions
 - Physical adjacency \leftrightarrow Logical adjacency

3-variable K-map

	00	01	11	10
0	000	001	011	010
1	100	101	111	110

4-variable K-map

AB	00	01	11	10
00	0000	0001	0011	0010
01	0100	0101	0111	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010

Numbering Scheme: 00, 01, 11, 10 is called a "Gray Code" — only a single bit (variable) changes from one code word and the next code word

Karnaugh Map Methods

K-map adjacencies go "around the edges" Wrap around from first to last column Wrap around from top row to bottom row

K-map Cover - 4 Input Variables

MIC

Logic Minimization Using K-Maps

- Very simple guideline:
 - Circle all the rectangular blocks of 1's in the map, using the fewest possible number of circles
 - Each circle should be as large as possible
 - Read off the implicants that were circled
- More formally:
 - A Boolean equation is minimized when it is written as a sum of the fewest number of prime implicants
 - Each circle on the K-map represents an implicant
 - The largest possible circles are prime implicants

K-map Rules

• What can be legally combined (circled) in the K-map?

- Rectangular groups of size 2^k for any integer k
- Each cell has the same value (1, for now)
- All values must be adjacent
 - Wrap-around edge is okay

• How does a group become a term in an expression?

- Determine which literals are constant, and which vary across group
- Eliminate varying literals, then AND the constant literals
 - constant $1 \rightarrow$ use X, constant $0 \rightarrow$ use \overline{X}

• What is a good solution?

- Biggest groupings → eliminate more variables (literals) in each term
- Fewest groupings → fewer terms (gates) all together
- OR together all AND terms you create from individual groups

MIC

K-map Example: Two-bit Comparator

Design Approach:

Write a 4-Variable K-map for each of the 3 output functions

Α	В	С	D	F1	F2	F3
0	0	0	0	1	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	1	0	0
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	1	0	0

SDU -map Example: Two-bit Comparator (2)

А	В	С	D		F1	F2	F3
0	0	0	0		1	0	0
0	0	0	1		0	1	0
0	0	1	0		0	1	0
0	0	1	1		0	1	0
0	1	0	0	•	0	0	1
0	1	0	1		1	0	0
0	1	1	0		0	1	0
0	1	1	1		0	1	0
1	0	0	0		0	0	1
1	0	0	1		0	0	1
1	0	1	0		1	0	0
1	0	1	1		0	1	0
1	1	0	0		0	0	1
1	1	0	1		0	0	1
1	1	1	0		0	0	1
1	1	1	1		1	0	0

MIC

39

MIC

MIC

SDU 🎓

Sequential Logic Circuits and Design

- Circuits that can store information
 - Cross-coupled inverter
 - R-S Latch
 - Gated D Latch
 - D Flip-Flop
 - Register

Introduction

- Combinational circuit output depends only on current input
- We want circuits that produce output depending on current and past input values – circuits with memory
- How can we design a circuit that **stores information**?

Capturing Data

Basic Element: Cross-Coupled Inverters

- Has two stable states: Q=1 or Q=0.
- Has a third possible "metastable" state with both outputs oscillating between 0 and 1 (we will see this later)
- Not useful without a *control mechanism* for setting Q

More Realistic Storage Elements

- Have a control mechanism for setting Q
 - We will see the R-S latch soon
 - Let's look at an SRAM (static random access memory) cell first

• We will get back to SRAM (and DRAM) later

The Big Picture: Storage Elements

- Latches and Flip-Flops
 - Very fast, parallel access
 - Very expensive (one bit costs tens of transistors)
- Static RAM (SRAM)
 - Relatively fast, only one data word at a time
 - Expensive (one bit costs 6+ transistors)
- Dynamic RAM (DRAM)
 - Slower, one data word at a time, reading destroys content (refresh), needs special process for manufacturing
 - Cheap (one bit costs only one transistor plus one capacitor)
- Other storage technology (flash memory, hard disk, tape)
 - Much slower, access takes a long time, non-volatile
 - Very cheap

Basic Storage Element: The R-S Latch

46

SDU 🎸

The R-S (Reset-Set) Latch

- Cross-coupled NAND gates
 - Data is stored at Q (inverse at Q')
 - S and R are control inputs
 - In quiescent (idle) state, both S and R are held at 1
 - S (set): drive S to 0 (keeping R at 1) to change Q to 1
 - **R (reset):** drive **R** to 0 (keeping **S** at 1) to change **Q** to 0
- S and R should never both be 0 at the same time

Inp	out	Output	
R	S	Q	
1	1	Q _{prev}	
1	0	1	
0	1	0	
0	0	Forbidden	

Why not R=S=0?

- 1. If **R=S=0, Q** and **Q'** will both settle to 1, which **breaks** our invariant that **Q** = !**Q'**
- If S and R transition back to 1 at the same time, Q and Q' begin to oscillate between 1 and 0 because their final values depend on each other (metastability)
 - This eventually settles depending on variation in the circuits

The Gated D Latch

The Gated D Latch

• How do we guarantee correct operation of an R-S Latch?

Q′

The Gated D Latch

• How do we guarantee correct operation of an R-S Latch?

D

WE/_ Clock S

R

- Reduce the number of states to three:
 - WE/Clock =1, D=1, Q=1
 - WE/Clock =1, D=0, Q=0
 - WE/Clock =0, D=X

- **Q** takes the value of **D**, when write enable (WE) is set to 1
- S and R can never be 0 at the same time!

Inp	out	Output	
WE	D	Q	
0	0	Q _{prev}	
0	1	Q _{prev}	
1	0	0	
1	1	1	

The Register

The Register

How can we use D latches to store **more** data?

- Use more D latches!
- A single Clock signal for all latches for simultaneous writes

Here we have a **register,** or a structure that stores more than one bit and can be read from and written to

This **register** holds 4 bits, and its data is referenced as Q[3:0]

The Register

How can we use D latches to store more data?

- Use more D latches!
- A single Clock signal for all latches for simultaneous writes

Here we have a **register,** or a structure that stores more than one bit and can be read from and written to

This **register** holds 4 bits, and its data is referenced as Q[3:0]