SDU-&~ MIC

Lesson 3

SDU-& MIC

Multiplexer (MUX)

SDU -+ MIC
Multiplexer (MUX), or Selector

 Selects one of the N inputs to connect it to the output
* based on the value of a log,N-bit control input called select

* Example: 2-to-1 MUX

'\IS\; S Dy Dy| Y

5~ 0 0 0] O

\’\ 0o o0 1|1

Y DO—O 0 1 0] 0
D, vy o 1 1] 1
5 1 0 0] O
! D, —1 1 0 1| o0
— 1 1 0|1

1 1 1|1

SDU -+ MIC
Multiplexer (MUX), or Selector (Il)

 Selects one of the N inputs to connect it to the output
* based on the value of a log,N-bit control input called select

* Example: 2-to-1 MUX

. 5=1 e 520
* A 0=0 c A 1=A
*B 1=8B e B 0=0
e B 0=B e A 0=A

SDU -+ MIC
Multiplexer (MUX), or Selector (lil)

* The output Cis always connected to either the input A or the input B
* Output value depends on the value of the select line S

= Ol
o >

-

ﬁ_

SDU -+ MIC
Example (10 min):

* Draw the schematic for a 4-input (4:1) MUX

e Gate level: as a combination of basic AND, OR, NOT gates and simulate it in

the logic.ly
* Module level: As a combination of 2-input (2:1) MUXes

SDU -+ MIC
Aside: Logic Using Multiplexers

* Multiplexers can be used as lookup tables to perform logic functions

A B|lyY
0 0 0
0 1 0
1 0 0 A
1 1|1 A B Y A Y
r=AB fg 2 EJ—PEE §|7—0
AB Y=AB “; Y
@ T [TPaE® s
o y 1 1 |1
10
L 44

\Y4

Figure 2.59 4:1 multiplexer
implementation of two-input AND
function

SDU -+ MIC
Aside: Logic Using Multiplexers (Il)

* Multiplexers can be used as lookup tables to perform logic functions

Y=A®B

SDU -+ MIC
Aside: Logic Using Multiplexers (lll)

* Multiplexers can be used as lookup tables to perform logic functions

A B C|Y ABC
0 0 0 1 J\I\L
0 0 1 0 T 000
0 1 1 1 010
1 0 0 1 011 |y
1 0 1 1 100
1 1 oo 101
1 1 1 0 110
111
Y=AB+BC+ ABC vV L—

3X1 Mux

SDU&

Aside: Logic Using Multiplexers (lll)

* How to implement the same logic by 2X1 MUX?

RF PR OOOOOID
HF R ooRr KOOl
HoOoORrORrOoORr oOID
© O HKFKHOOKRIK

Y=AB+ BC+ ABC

L1

00
01

10

11

2X1 Mux

10

_—

MIC

SDU-&~ MIC

Decoder

SDU&

Decoder

* “Input pattern detector”

* n inputs and 2" outputs

* Exactly one of the outputs is 1 and all the rest are Os

* The one output that is logically 1 is the output corresponding to the

input pattern that the logic circuit is expected to detect

* Example: 2-to-4 o

Aq

Ao

ecoder

Y3 Y

Y;

Yo

R = O O

0

1
0
1

0

0

0

0 0 1 0
0 1 0 0
1 0 0 0

1

2:4

Decoder

11
10
01
00

12

MIC

SDU -+ MIC
Decoder (l)

* n inputs and 2" outputs
e Exactly one of the outputs is 1 and all the rest are Os

* The one output that is logically 1 is the output corresponding to the
input pattern that the logic circuit is expected to detect

A=1—

1ifA B is 00 B=0

A——=
B G

ol

| 1ifA B is 01

;

1ifABis 10

Y

1ifABis 11

P

SDU & MIC
Decoder (ll)

* The decoder is useful in determining how to interpret a bit pattern

o It could be the address A=1 ’ g
of a row in DRAM, that B=0—s q

the processor intends to
read from +—

o It could be an
instruction in the
program and the !
processor has to decide
what action to do!
(based on instruction
opcode) 14

0O

SDU-&~ MIC

Full Adder

SDU-&
Full Adder (1)

* Binary addition
e Similar to decimal addition
* From right to left
* One column at a time
* One sum and one carry bit

* Truth table of binary addition on
one column of bits within two
n-bit operands

a,-1a,—2 ...A1QyH

bn—lbn—z ---blbO

Cn Cn—l Cq
Sn-1 5150
a; b; carry; carry;,;
0O 0 O 0
o 0 1 0
0 1 0 0
0 1 1 1
1 0 O 0
1 0 1 1
1 1 0 1
1 1 1 1

16

<&
<

R OORFRORPFOW

LTy

MIC

SDU-&
Full Adder (11)

* Binary addition
N 1-bit additions
 SOP of 1-bit addition

Full Adder (1 bit)

Ci+1

(;lcn—l

a,-1a,,—» ...aA1Qy

b,_1b,_5 ..bibg

C4

PP PP OOOOQg

-

Sn—l

PP OORFRFRPROOD

17

-

carry;

0
1
0
1
0
1
0
1

5150

0

P RPRPRPOFR OO

v

R OORORRFROW

i

MIC

SDU+~
4-Bit Adder from Full Adders

* Creating a 4-bit adder out of 1-bit full adders
* To add two 4-bit binary numbers A and B

I

<«— Full Adder <«— Full Adder 4—2 Full Adder <C—1 Full Adder <—0

as; a, aq4 Qg 1 0 1 1

+ b, b, by b, + 1 0 o0 1
Cq4 C3 Cop (Cq 1 0 1 1

S3 S S1 Sy 0 1 0 0

18

MIC

SDU -+ MIC
Adder Design: Ripple Carry Adder

e Delay propagation problem

31 831 ASG BBU

'?1 ‘IB1 "f\o ‘IBD
C‘:’“‘A\ \/ /J\ v /L """"") \T/ Co \T/ [~ C
s, S,

1

19

SDU -+ MIC
Adder Design: Carry Lookahead Adder

B31:28 A31:28 827:24 A27:24 B7:4 A7:4 B3:0 AS:O

+ ¢ + ¢ + ¢ + 4
c 4-bit CLA ’027 4-bit CLA ’Czs C?‘ 4bit CLA | G5 | a-bitcLA ’ c
out Block Block ¢ Block Block in
T T T 1
831 28 827:24 87:4 SS:D

(a)
-
B; Az B Az B Ay By Ao
| |]] |]]
\ V C, V Cy V Cy
+ / \ + / \ + / \
I I I
S3 S

S

Gy Gs
Ps
Gy

O+ <<
T
o

PR i
" —Rh
J

20

SDU-& MIC

ALU (Arithmetic Logic Unit)

SDU -+ MIC
ALU (Arithmetic Logic Unit)

 Combines a variety of arithmetic and logical operations into a single
unit (that performs only one function at a time)

e Usually denoted with this symbol:

000 A AND B
A B
N /I/N 001 A ORB
_ \/ ' 010 A+B
3 F
ALU 011 not used
*N 100 A AND B
Y —
101 A OR B
110 A-B

111 SLT

SDU&

Example ALU (Arithmetic Logic Unit)

F>.o Function
000 A AND B
001 A OR B
010 A+B
011 not used
100 A AND B
101 A ORB
110 A-B

111 SLT

23

MIC

SDU-& MIC

Tri-State Buffer

SDU &= MIC
Tri-State Buffer

* A tri-state buffer enables gating of different signals onto a wire

* Floating signal (Z): Signal that is not driven by any circuit
* Open circuit, floating wire

Tristate
Buffer VDD
E EN A B C D Q1 Q2 ouT
A%Y L L H H L off off HI-Z
—& our L H H H L off off HI-Z
E A Y A G | H L L H H on off L
B
0 0 Z H H L L L off on H
o 1| z
]_ 0 0 GND
1 1 1

Figure 2.40 Tristate buffer

25

SDU -+ MIC
Example: Use of Tri-State Buffers

* Imagine a wire connecting the CPU and memory

e At any time only the CPU or the memory can place a value on the wire, both
not both

* You can have two tri-state buffers: one driven by CPU, the other memory; and
ensure at most one is enabled at any time

26

SDU -+ MIC
Example Design with Tri-State Buffers

GateCPU

{ CPU

GateMem

Memor
{ y Shared Bus

27

SDU-&~ MIC

Another Example

_] (Processorent |

* Shared Bus is a common line between to bus — >

peripherals ot —<F)

* All of the devices connected with Tri-State Video en2)

Buffers oo _%ﬁ
 When a device use the shared bus all other , | shared bus

Ethernet en3

to bus

buffers are disconnected.

A

from bus
\

\

p
Memory en4

to bus

Ay

from bus
_ y,

28

SDU<=
Multiplexer Using Tri-State Buffers

S 5,5,
DO ‘Iié); DO

—Y
L
D1 T1 81 _0 vy
] e
Y= D08+ D-| S
S:So

Figure 2.56 Multiplexer using D, %
tristate buffers

MIC

SDU-& MIC

Karnaugh Maps (K-Maps)

SDU-&~ MIC

Complex Cases
* One example Cout = ABC + ABC + ABC + ABC

 Problem

e Easyto see how to apply Uniting Theorem...
* Hard to know if you applied it in all the right places...
e ..especially in a function of many more variables

* Question

* Isthere an easier way to find potential simplifications?
* j.e., potential applications of Uniting Theorem...?

e Answer

* Need an intrinsically geometric representation for Boolean f()
* Something we can draw, see...

31

SDU -+ MIC
Karnaugh Map

e Karnaugh Map (K-map) method

 K-map is an alternative method of representing the truth table that helps
visualize adjacencies in up to 6 dimensions

* Physical adjacency <= Logical adjacency

2-variable K-map 3-variable K-map . 4-variable K-map
NBo 1 ABC 00 01 11 10 AN 00 01 11 10
O] oo 01 0| 000 | 001 | 011 | 010 00 | oooo | 0001 | 0011 | 0010

11 10 11 1| 100 | 101 [122 | 120 01 | o100 | 0101 | 0111 | 0110

11 | 1100 | 1101 | 1111 | 1110

10 | 1000 | 1001 | 1011 | 1010

Numbering Scheme: 00, 01, 11, 10 is called a

“Gray Code” — only a single bit (variable) changes
from one code word and the next code word 32

SDU&

Karnaugh Map Methods

B

c
N 00 01 11 10

0 | ooo

001

011

010

11| 100

101

111

110

01

00 100

010

110

101

Adjacent

K-map adjacencies go “around the edges”

Wrap around from first to last column

Wrap around from top row to bottom row

33

MIC

SDU-&~ MIC

K-map Cover - 4 Input Variables

Agn 30 01 11 L
: o 1o I1 F=A+BD+BCD

34

SDU -+ MIC
Logic Minimization Using K-Maps

* VVery simple guideline:

 Circle all the rectangular blocks of 1’s in the map, using the fewest possible
number of circles

* Eachcircle should be as large as possible
e Read off the implicants that were circled

* More formally:

* A Boolean equation is minimized when it is written as a sum of the fewest
number of prime implicants

* Each circle on the K-map represents an implicant
* The largest possible circles are prime implicants

35

SDU-&~ MIC

K-map Rules

* What can be legally combined (circled) in the K-map?
e Rectangular groups of size 2* for any integer k
* Each cell has the same value (1, for now)

e All values must be adjacent
* Wrap-around edgeis okay

* How does a group become a term in an expression?

* Determine which literals are constant, and which vary across group
* Eliminate varying literals, then AND the constant literals
* constantl — use X, constantO — use X

 What is a good solution?

* Biggest groupings — eliminate more variables (literals) in each term
* Fewest groupings — fewer terms (gates) all together
* OR together all AND terms you create from individual groups

36

MIC

SDU&

Two-bit Comparator

K-map Example

F2 F3

F1

F1 JAB =CD

F2 JAB< CD

Design Approach:

Write a 4-Variable K-map

for each of the 3

output functions

37

MIC

A
SDufiz-map Example: Two-bit Comparator (2)

38

C
10

11

01

K-map for F1

CD
AB\ 00

00
01
11
10

NI

F1

MIC

A
SDufiz-map Example: Two-bit Comparator (3)

D
0

C
0

C

K-map for F2

o
i
D ~
= S
o
>~
. s
S)
0
©
O
m <
o W
O/ o =, i Q ¢
\Bo ° - -
AN M
< L L

39

SDU-& MIC

Sequential Logic
Circuits and Design

e Circuits that can store information
* Cross-coupledinverter
 R-Slatch
 Gated D Latch
D Flip-Flop
* Register

MIC

SDU&

Introduction

 Combinational circuit output depends only on current input

* We want circuits that produce output depending on current and past
input values — circuits with memory

* How can we design a circuit that stores information?

Sequential Circuit

§ s ™) §

o |Combinational -,

c - - =

= | i Circuit] o
Storage

Element|

SDU-& MIC

Capturing Data

SDU-&~ MIC

Basic Element: Cross-Coupled Inverters

— Q

0

Y)Y
Y)Y

— Q (a) (b)

Y1Y

 Has two stable states: Q=1 or Q=0.

* Has a third possible “metastable” state with both outputs
oscillating between 0 and 1 (we will see this later)

* Not useful without a control mechanism for setting Q

Image source: Harris and Harris, Digital Design and Computer Architecture, 2" Ed., p.110. 43

SDU&

More Realistic Storage Elements

* Have a control mechanism for setting Q
* We will see the R-S latch soon
* Let’s look at an SRAM (static random access memory) cell first

bitline bitline

wordline

SRAM cell

* We will get back to SRAM (and DRAM) later

MIC

SDU<=
The Big Picture: Storage Elements

Latches and Flip-Flops
* Very fast, parallel access
* Very expensive (one bit costs tens of transistors)

Static RAM (SRAM)

* Relatively fast, only one data word at a time
* Expensive (one bit costs 6+ transistors)

Dynamic RAM (DRAM)

e Slower,one data word at a time, reading destroys content (refresh), needs
special process for manufacturing

* Cheap (one bit costs only one transistor plus one capacitor)

Other storage technology (flash memory, hard disk, tape)
* Much slower, access takes a long time,

45

MIC

SDU-& MIC

Basic Storage Element:
The R-S Latch

SDU&

The R-S (Reset-Set) Latch

e Cross-coupled NAND gates
» Data is stored at Q (inverse at Q')

* Sand R are control inputs

* In quiescent (idle) state, both S and R are held at 1
e S(set):driveS to O (keeping R at 1) to change Qto 1
* R (reset):drive R to O (keeping S at 1) to change Qto 0

S and R should never both be 0 at the same time
R

D
D

S

©c O r BB

47

MIC

wn
j@)

Qp rev
1
0

Forbidden

© r O B

SDU-&~ MIC

Why not R=S=07? : i) } 0
| 0 |
R | S Q
1 1 Qprev
1 0 1 ﬂ |
0 1 0 R > Q’
0 0 Forbidden ﬂ

1. If R=5=0, Q and Q’ will both settle to 1, which breaks
our invariant thatQ =1Q’

2. If S and R transition back to 1 at the same time, Q and
Q’ begin to oscillate between 1 and 0 because their
final values depend on each other (metastability)

This eventually settles depending on variation in the circuits
48

SDU-& MIC

The Gated D Latch

SDU &= MIC
The Gated D Latch

* How do we guarantee correct operation of an R-S Latch?
—_D
D

—'fo

SDU &= MIC
The Gated D Latch

* How do we guarantee correct operation of an R-S Latch?

e Reduce the number of states to three:
« WE/Clock=1, D=1, Q=1
« WE/Clock=1, D=0, Q=0

 WE/Clock =0, D=X D D” S m

WE/
Clock
D1

* Q takes the value of D, when write enable (WE) is set to 1
e Sand R can never be 0 at the same time!

51

SDU-& MIC

The Register

SDU&

The Register

How can we use D latches to store more data?

« Use more D latches!
« A single Clock signal for all latches for

simultaneous writes

Qs

Q:

Qo

Here we have a
register, or a
structure that
stores more than
one bit and can be
read from and
written to

This register holds
4 bits, and its data
is referenced as

Q[3:0]

MIC

SDU&

The Register

How can we use D latches to store more data?

 Use more D latches!

« A ssingle Clock signal for all latches for

simultaneous writes

D3:0

1L4

WE —

Register x (Rx)

*4

Q3:0

Here we have a
register, or a
structure that
stores more than
one bit and can be
read from and
written to

This register holds
4 bits, and its data
is referenced as

Q[3:0]

MIC

