
Lesson 3
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Multiplexer (MUX)
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Multiplexer (MUX), or Selector

• Selects one of the N inputs to connect it to the output
• based on the value of a log2N-bit control input called select

• Example: 2-to-1 MUX

S Y

0 D0

1 D1



Multiplexer (MUX), or Selector (II)

• Selects one of the N inputs to connect it to the output
• based on the value of a log2N-bit control input called select

• Example: 2-to-1 MUX

• S=1
• A AND 0 = 0

• B AND 1 = B

• B OR 0 = B

A B

S

C

ba

S=1

0 B

B

S=0

A 0

A

• S=0
• A AND 1 = A
• B AND 0 = 0
• A OR 0 = A



Multiplexer (MUX), or Selector (III)

• The output C is always connected to either the input A or the input B
• Output value depends on the value of the select line S
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A B

S

C

S C
0 A
1 B



Example (10 min):

• Draw the schematic for a 4-input (4:1) MUX 
• Gate level: as a combination of basic AND, OR, NOT gates and simulate it in 

the logic.ly

• Module level: As a combination of 2-input (2:1) MUXes
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Aside: Logic Using Multiplexers

• Multiplexers can be used as lookup tables to perform logic functions
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Aside: Logic Using Multiplexers (II)

• Multiplexers can be used as lookup tables to perform logic functions
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Aside: Logic Using Multiplexers (III)

• Multiplexers can be used as lookup tables to perform logic functions
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3X1 Mux



Aside: Logic Using Multiplexers (III)

• How to implement the same logic by 2X1 MUX?
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2X1 Mux

00

01

10
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Decoder
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Decoder

• “Input pattern detector”

• n inputs and 2n outputs

• Exactly one of the outputs is 1 and all the rest are 0s

• The one output that is logically 1 is the output corresponding to the 
input pattern that the logic circuit is expected to detect

• Example: 2-to-4 decoder
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Decoder (I)

• n inputs and 2n outputs

• Exactly one of the outputs is 1 and all the rest are 0s

• The one output that is logically 1 is the output corresponding to the 
input pattern that the logic circuit is expected to detect

A
1 if A,B is 00

B

1 if A,B is 01

1 if A,B is 10

1 if A,B is 11

A = 1
0

B = 0

0

1

0



Decoder (II)

• The decoder is useful in determining how to interpret a bit pattern
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A = 1
0

B = 0

0

1

0

❑ It could be the address 
of a row in DRAM, that 
the processor intends to 
read from

❑ It could be an 
instruction in the 
program and the 
processor has to decide 
what action to do! 
(based on instruction
opcode)



Full Adder
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Full Adder (I)

• Binary addition
• Similar to decimal addition

• From right to left

• One column at a time

• One sum and one carry bit

• Truth table of binary addition on 
one column of bits within two 
n-bit operands
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𝒂𝒏−𝟏𝒂𝒏−𝟐 …𝒂𝟏𝒂𝟎

𝒃𝒏−𝟏𝒃𝒏−𝟐 …𝒃𝟏𝒃𝟎

𝑺𝒏−𝟏 … 𝑺𝟏𝑺𝟎

𝑪𝒏 𝑪𝒏−𝟏 … 𝑪𝟏

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1



Full Adder (II)

• Binary addition
• N 1-bit additions

• SOP of 1-bit addition
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𝒂𝒏−𝟏𝒂𝒏−𝟐 …𝒂𝟏𝒂𝟎

𝒃𝒏−𝟏𝒃𝒏−𝟐 …𝒃𝟏𝒃𝟎

𝑺𝒏−𝟏 … 𝑺𝟏𝑺𝟎

𝑪𝒏 𝑪𝒏−𝟏 … 𝑪𝟏

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Full Adder
ai

bi

ci

ai

bi

ci

ci+1

si

Full Adder (1 bit)



4-Bit Adder from Full Adders

• Creating a 4-bit adder out of 1-bit full adders
• To add two 4-bit binary numbers A and B
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𝒂𝟑 𝒂𝟐 𝒂𝟏 𝒂𝟎

𝒃𝟑 𝒃𝟐 𝒃𝟏 𝒃𝟎

𝒔𝟑 𝒔𝟐 𝒔𝟏 𝒔𝟎

𝒄𝟒 𝒄𝟑 𝒄𝟐 𝒄𝟏

+
𝟏 𝟎 𝟏 𝟏

𝟏 𝟎 𝟎 𝟏

𝟎 𝟏 𝟎 𝟎

𝟏 𝟎 𝟏 𝟏

+

Full Adder

a0b0

s0

0c1
Full Adder

a1b1

s1

c2
Full Adder

a2b2

s2

c3
Full Adder

a3b3

s3

c4



Adder Design: Ripple Carry Adder

• Delay propagation problem
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Adder Design: Carry Lookahead Adder
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ALU (Arithmetic Logic Unit)
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ALU (Arithmetic Logic Unit)

• Combines a variety of arithmetic and logical operations into a single 
unit (that performs only one function at a time)

• Usually denoted with this symbol:



Example ALU (Arithmetic Logic Unit)
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Tri-State Buffer
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Tri-State Buffer

• A tri-state buffer enables gating of different signals onto a wire

• Floating signal (Z): Signal that is not driven by any circuit
• Open circuit, floating wire
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Example: Use of  Tri-State Buffers

• Imagine a wire connecting the CPU and memory

• At any time only the CPU or the memory can place a value on the wire, both 
not both

• You can have two tri-state buffers: one driven by CPU, the other memory; and 
ensure at most one is enabled at any time
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Example Design with Tri-State Buffers
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CPU

Memory

GateMem

GateCPU

Shared Bus



Another Example

• Shared Bus is a common line between 
peripherals

• All of the devices connected with Tri-State 
Buffers

• When a device use the shared bus all other 
buffers are disconnected.
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Multiplexer Using Tri-State Buffers
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Karnaugh Maps (K-Maps)
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Complex Cases

• One example

• Problem
• Easy to see how to apply Uniting Theorem…

• Hard to know if you applied it in all the right places…

• …especially in a function of many more variables

• Question
• Is there an easier way to find potential simplifications?

• i.e., potential applications of Uniting Theorem…? 

• Answer
• Need an intrinsically geometric representation for Boolean f( ) 

• Something we can draw, see…
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𝑪𝒐𝒖𝒕 = ഥ𝑨𝑩𝑪 +𝑨ഥ𝑩𝑪 + 𝑨𝑩ഥ𝑪 +𝑨𝑩𝑪



Karnaugh Map

• Karnaugh Map (K-map) method
• K-map is an alternative method of representing the truth table that helps 

visualize adjacencies in up to 6 dimensions

• Physical adjacency ↔ Logical adjacency
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2-variable K-map

0 1

0 00 01

1 10 11

Numbering Scheme: 00, 01, 11, 10  is called a
“Gray Code” — only a single bit (variable) changes

from one code word and the next code word

00 01 11 10

00 0000 0001 0011 0010

01 0100 0101 0111 0110

11 1100 1101 1111 1110

10 1000 1001 1011 1010

3-variable K-map 4-variable K-map

00 01 11 10

0 000 001 011 010

1 100 101 111 110

𝑨𝑩𝑨
𝑩 𝑪𝑫

𝑨
𝑩𝑪



Karnaugh Map Methods
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Adjacent

000

001

010

011

110

111

100

101

000

001

010

011

110

111

100

101

Adjacent

K-map adjacencies go “around the edges”

Wrap around from first to last column

Wrap around from top row to bottom row

00 01 11 10

0 000 001 011 010

1 100 101 111 110

𝑨
𝑩𝑪



K-map Cover - 4 Input Variables
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00 01 11 10

00 1 0 0 1

01 0 1 0 0

11 1 1 1 1

10 1 1 1 1

𝑨𝑩
𝑪𝑫

Strategy for “circling” rectangles on Kmap:

As big as possible

Biggest “oops!” that people forget:

Wrap-arounds

𝐅 = 𝐀+ ഥ𝑩ഥ𝑫+ 𝐁ഥ𝑪𝑫𝐀 + ഥ𝑩ഥ𝑫𝐀



Logic Minimization Using K-Maps

• Very simple guideline:
• Circle all the rectangular blocks of 1’s in the map, using the fewest possible 

number of circles
• Each circle should be as large as possible

• Read off the implicants that were circled

• More formally:
• A Boolean equation is minimized when it is written as a sum of the fewest 

number of prime implicants
• Each circle on the K-map represents an implicant
• The largest possible circles are prime implicants
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K-map Rules

• What can be legally combined (circled) in the K-map?
• Rectangular groups of size 2k for any integer k
• Each cell has the same value (1, for now)
• All values must be adjacent

• Wrap-around edge is okay

• How does a group become a term in an expression?
• Determine which literals are constant, and which vary across group
• Eliminate varying literals, then AND the constant literals

• constant 1 ➙ use 𝐗,  constant 0 ➙ use ഥ𝑿

• What is a good solution?
• Biggest groupings ➙ eliminate more variables (literals) in each term 
• Fewest groupings ➙ fewer terms (gates) all together
• OR together all AND terms you create from individual groups
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K-map Example: Two-bit Comparator

Design Approach:

Write a 4-Variable K-map
for each of the 3
output functions
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A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

A
F1 AB = CD

B
F2 AB < CD

C
F3 AB > CD

D



K-map Example: Two-bit Comparator (2)
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00 01 11 10

00 1

01 1

11 1

10 1

K-map for F1

𝑨𝑩
𝑪𝑫

A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0F1 = A'B'C'D' + A'BC'D + ABCD + AB'CD'

𝑨
𝑩

𝑫

𝑪



K-map Example: Two-bit Comparator (3)
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A B C D F1 F2 F3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

00 01 11 10

00 1 1 1

01 1 1

11

10 1

K-map for F2

𝑨𝑩
𝑪𝑫

F2 = A'C + A'B'D + B'CD

F3 = ? (Exercise for you)

𝑨

𝑩

𝑫

𝑪



Sequential Logic 
Circuits and Design

• Circuits that can store information
• Cross-coupled inverter

• R-S Latch

• Gated D Latch

• D Flip-Flop

• Register
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Introduction

• Combinational circuit output depends only on current input

• We want circuits that produce output depending on current and past
input values – circuits with memory

• How can we design a circuit that stores information?
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Capturing Data
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Basic Element: Cross-Coupled Inverters

• Has two stable states: Q=1 or Q=0. 
• Has a third possible “metastable” state with both outputs 

oscillating between 0 and 1 (we will see this later)
• Not useful without a control mechanism for setting Q

Image source: Harris and Harris, Digital Design and Computer Architecture, 2nd Ed., p.110. 43



More Realistic Storage Elements

• Have a control mechanism for setting Q
• We will see the R-S latch soon
• Let’s look at an SRAM (static random access memory) cell first

• We will get back to SRAM (and DRAM) later

wordline

bitline bitline

SRAM cell
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The Big Picture: Storage Elements
• Latches and Flip-Flops

• Very fast, parallel access
• Very expensive (one bit costs tens of transistors)

• Static RAM (SRAM)
• Relatively fast, only one data word at a time
• Expensive (one bit costs 6+ transistors)

• Dynamic RAM (DRAM)
• Slower, one data word at a time, reading destroys content (refresh), needs 

special process for manufacturing
• Cheap (one bit costs only one transistor plus one capacitor)

• Other storage technology (flash memory, hard disk, tape)
• Much slower, access takes a long time, non-volatile
• Very cheap 
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Basic Storage Element:
The R-S Latch
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The R-S (Reset-Set) Latch

• Cross-coupled NAND gates
• Data is stored at Q (inverse at Q’)

• S and R are control inputs 
• In quiescent (idle) state, both S and R are held at 1

• S (set): drive S to 0 (keeping R at 1) to change Q to 1

• R (reset): drive R to 0 (keeping S at 1) to change Q to 0

• S and R should never both be 0 at the same time

S

R Q’

Q

Input Output

R S Q

1 1 Qprev

1 0 1

0 1 0

0 0 Forbidden
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Why not R=S=0?

1. If R=S=0, Q and Q’ will both settle to 1, which breaks
our invariant that Q = !Q’

2. If S and R transition back to 1 at the same time, Q and 
Q’ begin to oscillate between 1 and 0 because their 
final values depend on each other (metastability)

• This eventually settles depending on variation in the circuits

S

R Q’

Q

Input Output

R S Q

1 1 Qprev

1 0 1

0 1 0

0 0 Forbidden

10

0

01

1
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The Gated D Latch
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The Gated D Latch

• How do we guarantee correct operation of an R-S Latch?

S

R
Q’

Q

50



The Gated D Latch

• How do we guarantee correct operation of an R-S Latch?
• Reduce the number of states to three:

• WE/Clock =1, D=1, Q=1
• WE/Clock =1, D=0, Q=0
• WE/Clock =0, D=X

• Q takes the value of D, when write enable (WE) is set to 1 
• S and R can never be 0 at the same time!

S

R
Q’

Q

WE/

Clock

D
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Input Output

WE D Q

0 0 Qprev

0 1 Qprev

1 0 0

1 1 1



The Register
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The Register

D

Q

How can we use D latches to store more data?
• Use more D latches!
• A single Clock signal for all latches for
simultaneous writes

D2

Q2

D1

Q1

D0

Q0

3

3

Clock

Here we have a 
register, or a 
structure that 
stores more than 
one bit and can be 
read from and 
written to

This register holds 
4 bits, and its data 
is referenced as 
Q[3:0]

53



The Register
How can we use D latches to store more data?
• Use more D latches!
• A single Clock signal for all latches for
simultaneous writes

Register x (Rx)

D3:0

Q3:0

WE

4

4

Here we have a 
register, or a 
structure that 
stores more than 
one bit and can be 
read from and 
written to

This register holds 
4 bits, and its data 
is referenced as 
Q[3:0]
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