Lesson 3

Multiplexer (MUX)

SDU

Multiplexer (MUX), or Selector

- Selects one of the N inputs to connect it to the output
- based on the value of a $\log _{2} N$-bit control input called select
- Example: 2-to-1 MUX

S	D_{1}	D_{0}	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

SDU

Multiplexer (MUX), or Selector (II)

- Selects one of the N inputs to connect it to the output
- based on the value of a $\log _{2} N$-bit control input called select
- Example: 2-to-1 MUX
- $\mathrm{S}=1$
- A AND $0=0$
- B AND $1=\mathrm{B}$
- $\mathrm{B} O R 0=\mathrm{B}$

- $\mathrm{S}=0$
- A AND 1 = A
- B AND $0=0$
- A OR $0=A$

Multiplexer (MUX), or Selector (III)

- The output C is always connected to either the input A or the input B
- Output value depends on the value of the select line S

Example (10 min):

- Draw the schematic for a 4-input (4:1) MUX
- Gate level: as a combination of basic AND, OR, NOT gates and simulate it in the logic.ly
- Module level: As a combination of 2-input (2:1) MUXes

MIC

Aside: Logic Using Multiplexers

- Multiplexers can be used as lookup tables to perform logic functions

Figure 2.59 4:1 multiplexer implementation of two-input AND function

SDU:

Aside: Logic Using Multiplexers (II)

- Multiplexers can be used as lookup tables to perform logic functions

SDU:

Aside: Logic Using Multiplexers (III)

- Multiplexers can be used as lookup tables to perform logic functions

A	B	C	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0
$Y=A \bar{B}+\bar{B} \bar{C}+\bar{A} B C$			

Aside: Logic Using Multiplexers (III)

- How to implement the same logic by 2X1 MUX?

A	B	C	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0
$Y=A \bar{B}+\bar{B} \bar{C}+\bar{A} B C$			

Decoder

SDU:

MIC

Decoder

- "Input pattern detector"
- n inputs and 2^{n} outputs
- Exactly one of the outputs is 1 and all the rest are 0s
- The one output that is logically 1 is the output corresponding to the input pattern that the logic circuit is expected to detect
- Example: 2-to-4 decoder

A_{1}	A_{0}	Y_{3}	Y_{2}	Y_{1}	Y_{0}
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

MIC

Decoder (I)

- n inputs and 2^{n} outputs
- Exactly one of the outputs is 1 and all the rest are 0s
- The one output that is logically 1 is the output corresponding to the input pattern that the logic circuit is expected to detect

Decoder (II)

- The decoder is useful in determining how to interpret a bit pattern
- It could be the address of a row in DRAM, that the processor intends to read from
- It could be an instruction in the program and the processor has to decide what action to do! (based on instruction opcode)

14

Full Adder

Full Adder (I)

- Binary addition
- Similar to decimal addition
- From right to left
- One column at a time
- One sum and one carry bit
- Truth table of binary addition on one column of bits within two n-bit operands

$$
\begin{array}{ccc}
a_{n-1} a_{n-2} & \ldots & a_{1} a_{0} \\
b_{n-1} b_{n-2} & \ldots & b_{1} b_{0} \\
C_{n} C_{n-1} & \ldots & C_{1} \\
\hline S_{n-1} & \ldots & S_{1} S_{0}
\end{array}
$$

$\boldsymbol{a}_{\boldsymbol{i}}$	$\boldsymbol{b}_{\boldsymbol{i}}$	$\boldsymbol{c a r r y}_{\boldsymbol{i}}$	carry $_{\boldsymbol{i + 1}}$	$\boldsymbol{S}_{\boldsymbol{i}}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

MIC

Full Adder (II)

- Binary addition
- N 1-bit additions
- SOP of 1-bit addition

$$
\begin{array}{ccc}
a_{n-1} a_{n-2} & \ldots & a_{1} a_{0} \\
b_{n-1} b_{n-2} & \ldots & b_{1} b_{0} \\
C_{n} C_{n-1} & \ldots & C_{1} \\
\hline S_{n-1} & \ldots & S_{1} S_{0}
\end{array}
$$

$\boldsymbol{a}_{\boldsymbol{i}}$	$\boldsymbol{b}_{\boldsymbol{i}}$	carry $_{\boldsymbol{i}}$	carry $_{\boldsymbol{i + 1}}$	$\boldsymbol{S}_{\boldsymbol{i}}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

4-Bit Adder from Full Adders

- Creating a 4-bit adder out of 1-bit full adders
- To add two 4-bit binary numbers A and B

SDU:

Adder Design: Ripple Carry Adder

- Delay propagation problem

SDU:

Adder Design: Carry Lookahead Adder

SDU:

MIC

ALU (Arithmetic Logic Unit)

MIC

ALU (Arithmetic Logic Unit)

- Combines a variety of arithmetic and logical operations into a single unit (that performs only one function at a time)
- Usually denoted with this symbol:

$F_{2: 0}$	Function
000	A AND B
001	A OR B
010	A + B
011	not used
100	A AND $\overline{\mathrm{B}}$
101	A OR $\overline{\mathrm{B}}$
110	A - B
111	SLT

SDU

Example ALU (Arithmetic Logic Unit)

$F_{2: 0}$	Function
000	A AND B
001	A OR B
010	A + B
011	not used
100	A AND \bar{B}
101	A OR \bar{B}
110	A - B
111	SLT

SDU:

MIC

Tri-State Buffer

Tri-State Buffer

- A tri-state buffer enables gating of different signals onto a wire
- Floating signal (Z): Signal that is not driven by any circuit
- Open circuit, floating wire

[^0]
Example: Use of Tri-State Buffers

- Imagine a wire connecting the CPU and memory
- At any time only the CPU or the memory can place a value on the wire, both not both
- You can have two tri-state buffers: one driven by CPU, the other memory; and ensure at most one is enabled at any time

Example Design with Tri-State Buffers

Another Example

- Shared Bus is a common line between peripherals
- All of the devices connected with Tri-State Buffers
- When a device use the shared bus all other buffers are disconnected.

SDU:

Multiplexer Using Tri-State Buffers

Figure 2.56 Multiplexer using tristate buffers

Karnaugh Maps (K-Maps)

Complex Cases

- One example

$$
\text { Cout }=\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C
$$

- Problem
- Easy to see how to apply Uniting Theorem...
- Hard to know if you applied it in all the right places...
- ...especially in a function of many more variables
- Question
- Is there an easier way to find potential simplifications?
- i.e., potential applications of Uniting Theorem...?
- Answer
- Need an intrinsically geometric representation for Boolean f()
- Something we can draw, see...

Karnaugh Map

- Karnaugh Map (K-map) method
- K-map is an alternative method of representing the truth table that helps visualize adjacencies in up to 6 dimensions
- Physical adjacency \leftrightarrow Logical adjacency

4-variable K-map				
$C D$	00	01	11	10
00	0000	0001	0011	0010
01	0100	0101	0111	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010

Numbering Scheme: 00, 01, 11, 10 is called a
"Gray Code" - only a single bit (variable) changes

Karnaugh Map Methods

K-map adjacencies go "around the edges"
Wrap around from first to last column
Wrap around from top row to bottom row

SDU

K-map Cover - 4 Input Variables

Logic Minimization Using K-Maps

- Very simple guideline:
- Circle all the rectangular blocks of 1's in the map, using the fewest possible number of circles
- Each circle should be as large as possible
- Read off the implicants that were circled
- More formally:
- A Boolean equation is minimized when it is written as a sum of the fewest number of prime implicants
- Each circle on the K-map represents an implicant
- The largest possible circles are prime implicants

K-map Rules

- What can be legally combined (circled) in the K-map?
- Rectangular groups of size 2^{k} for any integer k
- Each cell has the same value (1, for now)
- All values must be adjacent
- Wrap-around edge is okay
- How does a group become a term in an expression?
- Determine which literals are constant, and which vary across group
- Eliminate varying literals, then AND the constant literals
- constant $1 \rightarrow$ use \mathbf{X}, constant $0 \rightarrow$ use \bar{X}

- What is a good solution?

- Biggest groupings \rightarrow eliminate more variables (literals) in each term
- Fewest groupings \rightarrow fewer terms (gates) all together
- OR together all AND terms you create from individual groups

K-map Example: Two-bit Comparator

Design Approach:
Write a 4-Variable K-map
for each of the 3 output functions

A	B	C	D	F1	F2	F3
0	0	0	0	1	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	1	0	0
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	1	0	0

SDU苗-map Example: Two-bit Comparator (2)

F1 =

A	B	C	D	$F 1$	$F 2$	$F 3$
0	0	0	0	1	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	1	0	0
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	0	
1	0	0	0			

SDU宕-map Example: Two-bit Comparator (3)

Sequential Logic Circuits and Design

- Circuits that can store information
- Cross-coupled inverter
- R-S Latch
- Gated D Latch
- D Flip-Flop
- Register

Introduction

- Combinational circuit output depends only on current input
- We want circuits that produce output depending on current and past input values - circuits with memory
- How can we design a circuit that stores information?

SDU

MIC

Capturing Data

Basic Element: Cross-Coupled Inverters

(a)

(b)

- Has two stable states: $\mathrm{Q}=1$ or $\mathrm{Q}=0$.
- Has a third possible "metastable" state with both outputs oscillating between 0 and 1 (we will see this later)
- Not useful without a control mechanism for setting Q

More Realistic Storage Elements

- Have a control mechanism for setting Q
- We will see the R-S latch soon
- Let's look at an SRAM (static random access memory) cell first

- We will get back to SRAM (and DRAM) later

The Big Picture: Storage Elements

- Latches and Flip-Flops
- Very fast, parallel access
- Very expensive (one bit costs tens of transistors)
- Static RAM (SRAM)
- Relatively fast, only one data word at a time
- Expensive (one bit costs 6+ transistors)
- Dynamic RAM (DRAM)
- Slower, one data word at a time, reading destroys content (refresh), needs special process for manufacturing
- Cheap (one bit costs only one transistor plus one capacitor)
- Other storage technology (flash memory, hard disk, tape)
- Much slower, access takes a long time, non-volatile
- Very cheap

Basic Storage Element: The R-S Latch

The R-S (Reset-Set) Latch

- Cross-coupled NAND gates
- Data is stored at \mathbf{Q} (inverse at \mathbf{Q}^{\prime})
- \mathbf{S} and \mathbf{R} are control inputs
- In quiescent (idle) state, both S and R are held at 1
- \mathbf{S} (set): drive \mathbf{S} to 0 (keeping \mathbf{R} at 1) to change \mathbf{Q} to 1
- \mathbf{R} (reset): drive \mathbf{R} to 0 (keeping \mathbf{S} at 1) to change \mathbf{Q} to 0
- \mathbf{S} and \mathbf{R} should never both be 0 at the same time

Input		Output
R	S	Q
1	1	$Q_{\text {prev }}$
1	0	1
0	1	0
0	0	Forbidden

Why not $\mathrm{R}=\mathrm{S}=0$?

Input		Output
R	S	Q
1	1	$Q_{\text {prev }}$
1	0	1
0	1	0
0	0	Forbidden

1. If $\mathbf{R}=\mathbf{S}=\mathbf{0}, \mathbf{Q}$ and \mathbf{Q}^{\prime} will both settle to 1 , which breaks our invariant that $\mathbf{Q}=!\mathbf{Q}^{\prime}$
2. If \mathbf{S} and \mathbf{R} transition back to 1 at the same time, \mathbf{Q} and Q^{\prime} begin to oscillate between 1 and 0 because their final values depend on each other (metastability)

- This eventually settles depending on variation in the circuits

SDU

MIC

The Gated D Latch

The Gated D Latch

- How do we guarantee correct operation of an R-S Latch?

The Gated D Latch

- How do we guarantee correct operation of an R-S Latch?
- Reduce the number of states to three:
- WE/Clock =1, $\mathrm{D}=1, \mathrm{Q}=1$
- WE/Clock $=1, \mathrm{D}=0, \mathrm{Q}=0$
- WE/Clock $=0, \mathrm{D}=\mathrm{X}$

- Q takes the value of \mathbf{D}, when write enable (WE) is set to 1
- \mathbf{S} and \mathbf{R} can never be 0 at the same time!

The Register

The Register

How can we use D latches to store more data?

- Use more D latches!
- A single Clock signal for all latches for simultaneous writes

Here we have a register, or a structure that stores more than one bit and can be read from and written to

This register holds 4 bits, and its data is referenced as Q[3:0]

The Register

How can we use D latches to store more data?

- Use more D latches!
- A single Clock signal for all latches for simultaneous writes

Here we have a register, or a structure that stores more than one bit and can be read from and written to

This register holds 4 bits, and its data is referenced as $\mathrm{Q}[3: 0]$

[^0]: Figure 2.40 Tristate buffer

