
Data Communication

(DC)

Lecture 3b

- Types of errors

- Redundancy

- Detection versus correction

- Block coding

- Cyclic codes

Overview of the contents

Data Link layer
Error detection and correction

A single-bit error means only 1 bit of a given data unit (e.g., byte, character, or packet) is
changed from 1 to 0 or from 0 to 1.

Single bit errors are less likely to occur.
e.g., a data rate of 1 Mbps, in such a case, will only have noise interference of a duration
of less than 1µs

Data Link layer
Error detection and correction

A burst error means that 2 or more bits in a given data unithas changed from 1 to 0 or
from 0 to 1.
Burst errors are more likely to happen in practice.

• If a data rate of 100 Kbps is affected by a noise of 1 ms, 100 bits are affected
• If a data rate of 100 Mbps is affected by a noise of 1 ms, 100,000 bits are affected

Data Link layer
Error detection and correction: Redundancy

The central concept in detecting or correcting errors is called redundancy. To be able to detect
errors and possibly correct them, then we need to send some redundant bits along with our
data stream.

• These redundant bits are added by the sender and removed by the receiver.

• Their presence allows the receiver to detect and possibly correct corrupted bits.

In case of error detection, we are only looking to see if any error has occurred. The
answer to this question is either yes or no. So we do not consider about where these
errors are and how many of them there are, but just whether they are there or not.

In case of error correction, we need to find not only the number of errors but also
their exact locations.

• Correct 1 error in an 8 bit data unit (byte) = 8 different places.
• Correct 2 errors in an 8 bit data unit (byte) = 28 different places.
• Correct 10 errors in a 1000 bit data unit = 2.63 ∙ 1023 different places.
 (or 263.409.560.461.970.212.832.400 different places)

To find the number of different places by r errors in n bits:

Data Link layer
Detecting errors is easier than correcting them

𝑛
𝑟

=
𝑛!

𝑟! 𝑛 − 𝑟 !

Data Link layer
Block coding

Basic idea

• A message is divided into blocks of k bits, these are called Datawords.

• We add r redundant bits to each block and then they are called Codewords.

• Codewords have the size of n=k+r bits

• 2k combinations of Datawords

• 2n combinations of Codewords.
• Since n > k and a Dataword can be always mapped into a Codeword, we get:

2n – 2k invalid or illegal Codewords, used to detect errors.

Data Link layer
Error detection

If the following two conditions are met, then the receiver can detect a change in the
original Codeword:

1. The receiver has (or can find) a list of valid Codewords.
2. The original Codeword has changed to an invalid Codeword.

• The sender generates Codewords from Datawords using rules and procedures applied by generators

• The receiver checks if Codewords are in the list: accepted/rejected

Data Link layer
Example (10.1): k =2 and n = 3.

We imagine that the sender encodes Dataword 01 to
Codeword 011 and sends it to the receiver:

1. The receiver receives 011. It is a valid Codeword and the receiver extract Dataword 01.

2. Codeword has changed during transmission and is received as 111

(the leftmost bit is corrupted). This Codeword is not valid and is rejected.

3. Codeword has changed during transmission and is received as 000 (2 bits have
been changed). It is a valid password and the receiver extracts Dataword 00.
this error is undetectable.

Conclusion: If the transmission changes the Codeword so that it corresponds to

another valid Codeword, then the error will not be detected.

Datawords Codewords
00 000
01 011
10 101
11 110

Data Link layer
Hamming distance

One of the key concepts in error detection is the idea of the Hamming distance.

Hamming distance between two datawords of the same size is the

number of different bits when the datawords are compared bit by bit.

We indicate the Hamming distance between x and y by using d(x,y).
One can easily find the Hamming distance between two datawords by XOR operation
on the two datawords with each other and then count the number of 1s.

E.g.,
D(000,011) = 2; because 000 XOR 011 = 011 (two 1s)
D(10101,11110) = 3; because 10101 XOR 11110 = 01011 (three 1s)

We use the notation to specify the Minimum Hamming distance.

Data Link layer
Minimum Hamming distance

The minimum Hamming distance is used to design codes. In a set of codewords, the
minimum Hamming distance will be the smallest Hamming distance between all possible
pairs of codewords.

dmin

E.g.,
Minimum Hamming (e.g., table 10.1)
d(000,011) = 2
d(000,101) = 2
d(000,110) = 2
d(011,101) = 2
d(011,110) = 2
d(101,110) = 2

(entry 1 and 2)
(entry 1 and 3)
(entry 1 and 4)
(entry 2 and 3)
(entry 2 and 4)
(entry 3 and 4)

dmin = 2

Datawords (k) Codewords (n)
00 000
01 011
10 101
11 110

Code notation C(n,k)

so C(3,2) with dmin = 2

Data Link layer
Minimum Hamming distance in case of error detection

What should the minimum Hamming distance be in a code scheme if we want
to be able to detect s errors?

If s error bits are sent, then the Hamming distance is also s. So if our code scheme
is to be able to detect up to s bit errors, then the minimum Hamming distance
between valid codewords must be at least s + 1.
If the minimum Hamming distance between all pairs of codewords is s + 1, then a
received password cannot be misinterpreted as another valid password.

Data Link layer
Minimum Hamming distance for linear block codes

Linear block coding is a code in which the XOR operation (addition modulo-2) of two
valid codewords creates another valid codeword.

• If we look at Table 10.1, then we will see that it meets this criterion.

• It is simple to find the minimum Hamming distance for a linear block code. The
minimum Hamming distance is the number of 1s in the nonzero valid codeword with
the smallest number of 1s.

Data Link layer
Parity-Check Code

Parity-Check Code is the most common error-detecting code in the category of linear
block codes. A k-bit dataword is changed to an n-bit codeword where n = k + 1. The extra
bit, called the parity bit, is selected to make the total number of 1s in the codeword even.

• The minimum Hamming distance is 2, used for single-bit error detection.

The parity bit calculated as: r0 = (a3 + a2 + a1 + a0) modulo-2
The receiver decodes all receiving bits and finds the syndrome: S0 = (b3 + b2 + b1 + b0 + q0) modulo-2
S0=0 → Accept and S0=1 →Discard (A simple parity check can only detect an odd number of errors)

Data Link layer
Cyclic codes

Cyclic codes are special linear block codes with one extra property. In a cyclic code, if a codeword is
cyclically shifted (rotated), the result is another codeword.

Cyclic Redundant Check (CRC)

This method is used in both LAN and WAN networks. An CRC example is given below with C(7,4):

Datawords Codewords Datawords Codewords

0000 0000000 1000 1000101
0001 0001011 1001 1001110
0010 0010110 1010 1010011
0011 0011101 1011 1011000
0100 0100111 1100 1100010
0101 0101100 1101 1101001

0110 0110001 1110 1110100
0111 0111010 1111 1111111

We can see that both linear and cyclic properties are present in this coding scheme.

A XOR B = C; A << 1 = B; A << 2 = D; C << 1 = E

A

B

C

D

E

Data Link layer
Cyclic codes

Note: The divisor is predefined and agreed in advance, it is used by both sender
and receiver.

Data Link layer
Cyclic codes: Sender side

If the leftmost bit in the dividend
is 1, then 1011 is used.

If the leftmost bit in the dividend
is 0, then 0000 is used.

In both cases, the
subtraction of the two 4-bit

dividend and divisor
implemented by XOR and a 0
is moved down.

The last 3 bits (the remainder)
are put in the back of the

original dataword.

The quotient is just thrown away!

Data Link layer
Cyclic codes: Receiver side

Data Link layer
Polynomials

A better way to understand cyclic codes and how they can be analyzed is to represent
them as polynomials

A pattern of 0s and 1s can be represented as a polynomial with coefficients of 0 and
1. The power of each term shows the position of the bit; the coefficient shows the value
of the bit.

Data Link layer
Polynomials

The dividend is shifted 3 bits to the left (i.e., 000 was put at the end of the dataword in the binary

version) What the divisor must be multiplied by is the quotient polynomial, which get the same

degree as the dividend polynomial at each step, e.g., (x3 + x + 1)∙x3 = x6 + x4 + x3 and (x3 + x + 1)∙x = x4 + x2 + x

Data Link layer
Cyclic code analysis

We can now analyze a cyclic code and explore its possibilities using f(x) type
polynomials with binary coefficients. We define the following polynomials:

Dataword:

Codeword:

Generator:

Syndrome :

Error:

d(x)

c(x)

g(x)

s(x)

e(x)

For cyclic code:
1. If s(x) ≠ 0, then one or more bits are faulty.
2. If s(x) = 0, then:

a) No bit is corrupted.
b) or some bits are corrupted but the decoder failed to detect them.

Cyclic code analysis

The codeword received can be described as:

The receiver divides the received password with the generator polynomial, this can be
written as:

Since the division c(x)/g(x) by definition has a remainder of zero, we can say that the
syndrome can be written as:

Data Link layer

Conclusion:
In a cyclic code, those e(x) errors that are divisible by g(x) are not caught.

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 = 𝑐 𝑥 + 𝑒(𝑥)

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑

𝑔(𝑥)
=

𝑐 𝑥

𝑔(𝑥)
+

𝑒(𝑥)

𝑔(𝑥)

𝑠(𝑥) =
𝑒(𝑥)

𝑔(𝑥)

Data Link layer
Cyclic code analysis

Single‐bit error

• A single bit error can be written as follows: e(x)=xi, where i is the
position of the erroneous bit.

• If a single bit error is caught, then xi is not divisible by g(x)
(so there is a remainder which means that s(x)≠0)

• if g(x) has at least two terms (which is normal) and x0 ≠ 0, then e(x)

(which is xi) cannot be divided by g(x) (which means that s(x)≠0)

Conclusion:
If the generator polynomial g(x) has more than one term and g(x)’s

smallest term x0=1, then all single bit errors are detected.

Data Link layer
Cyclic code analysis

Two isolated Single‐bit errors

This type of error can be written as:

j and i's values describe the positions of the errors and the difference j - i defines the distance
between the two errors. We can rewrite xj + xi as follows:

if g(x) has more than one term and g(x)’s smallest term x0=1, then it cannot divide xi

(as we have just seen).
so if g(x) is to be able to divide e(x), it must be able to divide xj ‐ i+1.
Therefore we must demand that g(x) cannot divide xt+1 where t is between 2 and n‐1

• 2 corresponds to the minimum distance between two errors (= two isolated single‐bit
errors)

• n‐1 corresponds to maximum distance between two errors (first and last bit of the
transmitted data)

Conclusion:
If the generator polynomial g(x) cannot divide xt+1 (where t is between 2

and n ‐ 1), then all isolated double errors are detected.

Data Link layer
Cyclic code analysis

An odd number of errors

A generator polynomial g(x), containing a factor of x+1, can detect all odd-numbered
errors.

This means that we need to make x+1 a factor of any generator

it is not the same as saying the generator should be x+1, actually if it is ony x+1, it
cannot catch the two adjacent isolated errors.

Data Link layer
Cyclic code analysis

Burst error
Burst errors are the most important to include in this analysis as they are the most
common errors. A Burst error has the form:

We can isolate xi and write:

If g(x) can detect single‐bit errors, then we do not have to worry about xi. What we need to
ensure is that:

(Generator polynomial g(x) is what is shown as denominator)

𝑒 𝑥 = (𝑥𝑗 + ⋯ + 𝑥𝑖)

𝑒 𝑥 = 𝑥 𝑖 ∙ (𝑥 𝑗−𝑖 + ⋯ + 1)

(𝑥 𝑗−𝑖 + ⋯ + 1)

(𝑥𝑟 + ⋯ + 1)
≠ 0

Data Link layer
Cyclic code analysis

Burst error
We can have the following outcomes:

1. If j ‐ i < r, then the division remainder can never be 0. we can write j ‐ i = L ‐ 1, where L is
the length of the burst error. This means that L – 1 < r, or L < r + 1, or L ≤ r. Which means
that all burst errors with a length less than or equal to the degree of the generator
polynomial will be detected.

2. In rare cases j ‐ i = r, or L = r + 1. Here the syndrome s(x) can become 0 and the error will not
be detected. It can be shown that the probability of an undetected burst error of length L is:
(½)r‐1.
If our g(x) is x14+x3+1, then r=14, and if the burst error is L=15, then the probability of errors not
being detected is (½)14‐1, which corresponds to 1 out of approximate 10,000.

3. In rare cases, j ‐ i > r, or L > r + 1. Here the syndrome s(x) can become 0 and the error will not
be detected. It can be shown that the probability of an undetected burst error of length L is:
(½)r.
If our g(x) is x14+x3+1, then r=14, and if the burst error is of L>15, then the probability of not
being detected is (½)14, which corresponds to 1 out of approximate 16,000.

Data Link layer
Cyclic code analysis

Burst error

• All burst errors of length L ≤ r will be detected.

• All burst errors with length L = r + 1 will be detected with a probability

of 1 – (½)r‐1.

• All burst errors with length L > r + 1 will be detected with a probability

of 1 – (½)r.

Data Link layer
Cyclic code analysis

A good generator polynomial should have the following characteristics:

1.The pattern have at least two terms.

2. The coefficient of the term x0 should be 1.

3.It should not divide xt + 1, for t between 2 and n‐1.

4.It should have the factor x + 1.

Name Polynomial

CRC‐8 x8 + x2 +x +1 (100000111)

CRC‐10 x1O + x9 + x5 + x4 + x2 +1 (11000110101)

CRC‐16 x16 + x12 + x5 +1 (10001000000100001)

CRC‐32 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x1O + x8 + x7 + x5 + x4 + x2 +x +1
(100000100110000010001110110110111)

	Slide 1: Data Communication (DC)
	Slide 2
	Slide 3: Data Link layer Error detection and correction
	Slide 4: Data Link layer Error detection and correction
	Slide 5: Data Link layer Error detection and correction: Redundancy
	Slide 6: Data Link layer Detecting errors is easier than correcting them
	Slide 7: Data Link layer
	Slide 8: Data Link layer
	Slide 9: Data Link layer Example (10.1): k =2 and n = 3.
	Slide 10: Data Link layer
	Slide 11: Data Link layer
	Slide 12: Data Link layer
	Slide 13: Data Link layer
	Slide 14: Data Link layer
	Slide 15: Data Link layer
	Slide 16: Data Link layer Cyclic codes
	Slide 17: Data Link layer
	Slide 18: Data Link layer Cyclic codes: Receiver side
	Slide 19: Data Link layer Polynomials
	Slide 20: Data Link layer Polynomials
	Slide 21: Data Link layer
	Slide 22: Data Link layer
	Slide 23: Data Link layer
	Slide 24: Data Link layer
	Slide 25: Data Link layer
	Slide 26: Data Link layer
	Slide 27: Data Link layer
	Slide 28: Data Link layer
	Slide 29: Data Link layer

