Diskret Fourier Transformation

See slides.

Pasted image 20230928091317.png

Skalleringen ($1/N$) kan være i begge formler, bare den kun er i én af dem. $$X(m) := \frac{1}{N} \sum_{n=0}^{N-1}x(nT) W_{N}^{mn}$$ $$x(n) = \sum_{m=0}^{N-1}X(m) W_{n}^{-mn}$$ $$W_{N}= e^{-j2\pi /N}$$ $N$: Samples pr. period ($\frac{1}{N} = FT$) $T$: Time between samples

**The distance between samples in the frequency spectrum is $f_{s}/N$.**

Therefore we can get a higher resolution by zero-padding, which just means adding a bunch of zeros to the end of the signal in the time domain before transforming it.


Backlinks