$$ \newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\dx}{\text{ dx}}
\newcommand{\rang}{\text{rang}}
\newcommand{\s}{\ \ \ \ \ \ }
\newcommand{\arrows}{\s \Leftrightarrow \s}
\newcommand{\Arrows}{\s \Longleftrightarrow \s}
\newcommand{\arrow}{\s \Rightarrow \s}
\newcommand{\c}{\bcancel}
\newcommand{\v}[2]{
\begin{pmatrix}
#1 \\
#2 \\
\end{pmatrix}
}
\newcommand{\vt}[3]{
\begin{pmatrix}
#1 \\
#2 \\
#3 \\
\end{pmatrix}
}
\newcommand{\stack}[2]{
\substack{
#1 \\
#2
}
}
\newcommand{\atom}[3]{
\substack{
#1 \\
#2
}
\ce{#3}
}
$$
Strøm
En strøm af ladning.
“The current entering a node must equal the current exiting a node”
If this was not true, charge would accumulate in some nodes, whilst being absent from others. Because of charge’s tendency to attract opposites imbalance evens out.
Enhed: $A = \frac{C}{s}$
Strøm og ladning
Strøm er ladningen differentieret
$$i(t) = q'(t)$$
Derfor kan vi udregne ladningen der passerer gennem et komponent ved at integrere:
$$\int_{t_0}^t i(t) dt$$
$i(t)$: Strøm over tid.
Backlinks