Hello there!

My name is Balder and this is my personal website. Here i write down what i learn to maybe help others some day. For now i will just act like people are reading my articles, and make them for fun.

This website has three main sections:

I write these articles for fun, and even though i try to make sure that they are correct, i am not a perfect human and there are sure to be mistakes. Below is a list of most recent articles in all categories.

Recent Posts

Typer Henfald
Typer Henfald Skemaer er fra formelsamlingen#page=16 [Det Periodiske System](Det Periodiske System) $\alpha$-henfald $$\atom{A}{Z}{X} \rightarrow \atom{A-4}{Z-2}{Y} + \atom{4}{2}{He}$$ For moderkerne udsender en heliumkerne, som består af 2 protoner og 2 neutroner, så datterkernen får 4 færre nukleoner. 2 lavere ladningstal. Herved er nukleontallet, ladningen og leptontallet bevaret. Energi og impuls er også bevaret, men dette kan ikke ses i vores reaktionsskema. $\beta^-$-henfald $$\atom{A}{Z}{X} \rightarrow \atom{A}{Z + 1}{Y} + \atom{0}{-1}{e} + \overline{\text{v}_e}$$
Types of Microcontrolers
Types of Microcontrolers ![center](kinds of microcontrolers.png) General Purpose Microprocessors Standard choice for prototyping. FPGA You can rewire the entire circuits yourself. Application Specific Integrated Cirtuits (ASIC) Static wireing Good for mass production.
UART Protocol
UART Protocol See [Lesson 9.pdf#page=23#page=23](Lesson 9.pdf) Data is sent with the LSB first. Common Baud Rates Frequency (Hz) 4800 9600 19200 115200 1000000 To set the baud rate for AVR use this formula to set the UBRRL register. $$\text{UBRRL} = \frac{F_{osc}}{16 \cdot baudrate} -1 $$ Parity If enabled: adds one extra bit at the end of the message.
Uegenlige Integraler
Uegenlige Integraler “Undgå det punkt hvor funktionsværdien er problematisk” - Henrik Typer af uegenlige integtaler $$\int_{a}^{b} f(x) dx$$ Type 1 $$a=-\infty \s \text{eller} \s b = \infty$$ Løsning Lav grænser, integrer, og sæt ind i funktionen. $$\int_{a}^{\infty}f(x)dx \arrow \lim_{R\to \infty}\left(\int_{a}^{R}f(x) dx\right)$$ Type 2 $$\lim_{x\to a \lor b}(f(x))= \infty$$ *Løsning* $$\int_{a}^{b}f(x)dx \arrow \lim_{x\to a\lor b}\left(\int_{a}^{b}f(x)dx \right)$$ Uegenlige Integraler - Video #matematik #integraler
Ulige Funktioner
Ulige Funktioner $$f(-x) = -f(x)$$ Ulige funktioner går gennem orego. $$f(0) = 0$$ #matematik #funktioner
Unified Process
Unified Process Steps Inception - find requirements, state business case Elaboration - define system architecture Construction - Construct the system Transition - Deploy the system into the real world #softwaredevelopment
Varmekapacitet
Varmekapacitet $$E_{term} = m \cdot c \cdot \Delta T$$ $m$: massen $c$: varmekapaciteten $\Delta T$: Temperaturændringen Specifik varmekapacitet $$C=m \cdot c$$ Den specifikke varmekapacitet $C$ er specifik for hvert objekt, og beskriver hvor meget energi der tager at opvarme objektet (se formlen neden). $m$ er massen $c$ er materialets varmakapacitet. (kan normalt findes i databogen) Derfor man man omskrive formlen øverst på siden til dette: $$E_{term} = C \cdot \Delta T$$
Vektorer
Vektorer Vektor = en retning i et punkt. Det kan opfattes som et linjestykke der går ud fra punktet. $$\vec{a} = \begin{pmatrix} x \ y \ \end{pmatrix}$$ $$\text{længde af vektor} = \left| \vec{a} \right|,\ \ x^{2} + y^{2} = {|\vec{a}|}^{2}$$ vektor lægges sammen: $$\begin{pmatrix} x1 \ y1 \ \end{pmatrix} + \begin{pmatrix} x2 \ y2 \ \end{pmatrix} = \begin{pmatrix} x1 + x2 \ y1 + y2 \ \end{pmatrix}$$ Noter om Vektorer list from #vektorer sort file.
Vektorfunktioner
Vektorfunktioner $$\vec{f}(t)=\v{x(t)}{y(t)}$$ #matematik
Velocity Curves
Velocity Curves Ways of getting from one point to another in a smooth and stylish fashion! [slides#page=18](Lecture 11 - Jacobian Singularities Numerical IK and Trajectory Generation.pdf) Trapezoidal Velocity Profiles A simple velocity profile. It does however result in high jerk which can result in wear on the motors. Therefore, #Cubic Polynomial Profiles#Cubic Polynomial Profiles are usually used instead. ![Pasted image 20230622100202.png](Pasted image 20230622100202.png) Cubic Polynomial Profiles $$ \begin{align} q(t) &= at^{3} + bt^{2} + ct + d \