Differensligninger

Describe the output ($y$) as a function of an input ($x$) and previous values of $y$. $$ y(n) = \sum_{i=0}^{N}a_{i}x(n-i) - \sum_{i=1}^{N}b_{i}y(n-i) $$

Første Orden

$N=1$ $$y(n) = a_{0}x(n) + a_{1}x(n-1) - b_{1}y(n-1)$$

Anden Orden

$N=2$ $$y(n) = a_{0}x(n) + a_{1}x(n-1) + a_{2}x(n-2) - b_{1}y(n-1) - b_{2}y(n-2)$$

Overføringsfuntion

Samme som i Laplace Transformation.

$$H(z) = \frac{Y(z)}{X(z)}$$

Differensligning til overføringsfunction

Example: transfer function from difference equation