$$ \newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\dx}{\text{ dx}}
\newcommand{\rang}{\text{rang}}
\newcommand{\s}{\ \ \ \ \ \ }
\newcommand{\arrows}{\s \Leftrightarrow \s}
\newcommand{\Arrows}{\s \Longleftrightarrow \s}
\newcommand{\arrow}{\s \Rightarrow \s}
\newcommand{\c}{\bcancel}
\newcommand{\v}[2]{
\begin{pmatrix}
#1 \\
#2 \\
\end{pmatrix}
}
\newcommand{\vt}[3]{
\begin{pmatrix}
#1 \\
#2 \\
#3 \\
\end{pmatrix}
}
\newcommand{\stack}[2]{
\substack{
#1 \\
#2
}
}
\newcommand{\atom}[3]{
\substack{
#1 \\
#2
}
\ce{#3}
}
$$
Kirchhoff’s Voltage Law
$$\sum V = 0 \s \text{closed loop}$$
“The algebraic sum of the voltages equals zero for any closed path (loop) in an electrical circuit”
This is a result of conservation of energy. We cannot “use” more voltage that what is provided.
KCL - Current
Backlinks