z-transformation

$$z = e^{j\omega T}$$

When we sample a signal, be may get poles repeated up and down the imaginary axis. The z-transformation solves this by wrapping the imaginary axis around the unit circle of the z-plane.

$$ X(z) = \mathcal{Z}{x(t)} = \sum_{n=0}^{\infty} x(n)z^{-n} $$ $X(z)$ converges (is stable) if $|x| < 1$.

Zero points in the center only alter the phase, not the amplitude.

Transfer Function

$$H(z) = \frac{Y(z)}{X(z)}$$ $X(z)$: Input sequence $Y(z)$: Output sequence

We cannot create a z-plane without a sample rate.

400

Lookup Tables

450 450

Standard Transfer Functions

1. Order

$$H(z) = \frac{Y(z)}{X(z)} = \frac{a_{0} + a_{1}z^{-1}}{1+b_{1}z^{-1}} = \frac{a_{0}z + a_{1}}{z + b_{1}}$$

2. Order

$$H(z) = \frac{Y(z)}{X(z)} = \frac{a_{0} + a_{1}z^{-1} + a_{2}z^{-2}}{1+b_{1}z^{-1}+b_{2}z^{-2}} = \frac{a_{0}z^2 + a_{1}z + a_{2}}{z^{2} + b_{1}z + b_{2}}$$

Poles and Stability

Poles within the unit circle -> stable system Poles outside the unit circle -> unstable system

Relation to Laplace Transformation

$$ \begin{cases} \mathcal{L}{x(t)} = \sum_{n=0}^{\infty} x(n)e^{-snT} \s s = \sigma + j\omega \ \mathcal{Z}{x(t)} = \sum_{n=0}^{\infty} x(n)z^{-n} \end{cases} \s\Rightarrow\s s = e^{sT} = e^{\frac{\sigma}{f_{s}}} \cdot e^{2\pi} $$

The Real Axis

The real axis in the $z$-domain is mapped to the z-plane’s real axis from $0$ to $\infty$. The negative part is mapped to the range $[0, 1]$.

Inverse z-transform

This is done with a table lookup. See tables. See slides.

If the expression if not found in the table try partial fractions.

Make sure that the system is stable before converting back

Example

Partialbrøker

Impulse Response (note)

For the Unit Sample

The impulse response $h(n)$ for a unit sample sequence can be found by taking the inverse z-transformation of the transfer function.

$$h(n) = \mathcal{Z}^{-1}{H(z)}$$

Stabilitet

See slides.

Stabilt system

Et system er stabilt hvis dets impulsrespons $h(n)$ går mod nul når n går med uendelig. $$\lim_{n\to\infty}\ |h(n)| = 0$$ Her ligger **alle poler inden for enhedscirklen** i z-domænet. $$|p_{i}| < 1, \s \forall i \in \set{1,2,3,\dots,N}$$

Marginalt stabilt system

Et system er marginalt stabilt hvis dets impulsrespons $h(n)$ går mod konstant værdi forskellig fra nul eller oscillerer med konstant amplitude og frekvens når $n$ går mod uendelig.

Mindst én pol skal ligge på enhedcirklen og resten indenfor.

Ustabilt system

Et system er ustabilt hvis dets impulsrespons $h(n)$ vokser ubegrænset når $n$ går mod $\infty$. $$\lim_{n\to\infty}\ |h(n)| = \infty$$ Hvis bare **én pol ligger udenfor enhedscirklen** er systemet ustabilt. $$|p_{i}| > 1, \s \exists i \in \set{1,2,3,\dots, N}$$

Frekvensrespons

See slides. See also grafisk bestemmelse.