Hello there!

My name is Balder and this is my personal website. Here i write down what i learn to maybe help others some day. For now i will just act like people are reading my articles, and make them for fun.

This website has three main sections:

I write these articles for fun, and even though i try to make sure that they are correct, i am not a perfect human and there are sure to be mistakes. Below is a list of most recent articles in all categories.

Recent Posts

Ulige Funktioner
Ulige Funktioner $$f(-x) = -f(x)$$ Ulige funktioner går gennem orego. $$f(0) = 0$$
Unified Process
Unified Process Steps Inception - find requirements, state business case Elaboration - define system architecture Construction - Construct the system Transition - Deploy the system into the real world
Unit Sample
Unit Sample A sequence that is $1$ as $n=0$ and $0$ otherwise $$ \delta(n) = \begin{cases} 1: &n = 1 \ 0: &n \neq 1 \end{cases} $$
Varmekapacitet
Varmekapacitet $$E_{term} = m \cdot c \cdot \Delta T$$ $m$: massen $c$: varmekapaciteten $\Delta T$: Temperaturændringen Specifik varmekapacitet $$C=m \cdot c$$ Den specifikke varmekapacitet $C$ er specifik for hvert objekt, og beskriver hvor meget energi der tager at opvarme objektet (se formlen neden). $m$ er massen $c$ er materialets varmakapacitet. (kan normalt findes i databogen) Derfor man man omskrive formlen øverst på siden til dette: $$E_{term} = C \cdot \Delta T$$
Vector Fields
Vector Fields A way of representing functions with $2$- or $3$-dimensional inputs and outputs. The coordinate system is the input space and the output is shown as vectors from a subset of the infinite points in the input space. Conservative Fields “When a scalar function can be converted into a vector field using a > gradient> ." - Cornelia’s Notes Any line integral from point a to point be will always be the same.
Vektorer
Vektorer Vektor = en retning i et punkt. Det kan opfattes som et linjestykke der går ud fra punktet. $$\vec{a} = \begin{pmatrix} x \ y \ \end{pmatrix}$$ $$\text{længde af vektor} = \left| \vec{a} \right|,\ \ x^{2} + y^{2} = {|\vec{a}|}^{2}$$ vektor lægges sammen: $$\begin{pmatrix} x1 \ y1 \ \end{pmatrix} + \begin{pmatrix} x2 \ y2 \ \end{pmatrix} = \begin{pmatrix} x1 + x2 \ y1 + y2 \ \end{pmatrix}$$ Noter om Vektorer list from #vektorer sort file.
Vektorfunktioner
Vektorfunktioner $$\vec{f}(t)=\v{x(t)}{y(t)}$$
Velocity Curves
Velocity Curves Ways of getting from one point to another in a smooth and stylish fashion! slides Trapezoidal Velocity Profiles A simple velocity profile. It does however result in high jerk which can result in wear on the motors. Therefore, >Cubic Polynomial Profiles are usually used instead. Cubic Polynomial Profiles $$ \begin{align} q(t) &= at^{3} + bt^{2} + ct + d \ \dot{q}(t) &= 3at^{2} + 2bt + c \ \ddot{q}(t) &= 6at + 2b \ \dddot{q}(t) &= 6a \end{align} $$ Because jerk is constant, the motion will be smooth, and the motor will therefore last longer.
Vinkelfrekvens
Vinkelfrekvens $$\omega = 2\pi \cdot f$$
Viskositet
Viskositet ($\eta$) Hvor “honningagtig” en væske er. Jo højere viskositet, jo sejere er væsken.