Hello there!

My name is Balder and this is my personal website. Here i write down what i learn to maybe help others some day. For now i will just act like people are reading my articles, and make them for fun.

This website has three main sections:

I write these articles for fun, and even though i try to make sure that they are correct, i am not a perfect human and there are sure to be mistakes. Below is a list of most recent articles in all categories.

Recent Posts

Coulumbs Lov
Coulumbs Lov $$F=k_c \cdot \frac{Q \cdot q}{r^2}$$ $F$: Tiltrækning- (hvis $F>0$) eller frastødningskraften (hvis $F < 0$). $Q$: den ene ladning $q$: den anden ladning $r$: Distancen mellem ladningerne $k_c$: Coulumbs konstant Minder om gravitationsloven.
Craig's Notation
Craig’s Notation Frames are notated with curly braces around a capital letter, eg. $\set A$. $$^A\hat{X}_B$$ This is the notation for the x-axis of $\set B$ as seen from $\set A$. Translation $$^AP_2 =\ ^AP_1 +\ ^AQ$$ Here $^AQ$ is the translation.
Curl
Curl A measure of average rotation around points in a vector field. $$\mathbf{curl}\ \vec{v}(x,y) = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y},\ \text{where}\ \vec{v}(x,y) = \begin{bmatrix} P(x,y) \ Q(x,y) \end{bmatrix} $$ $$ \begin{cases} \mathbf{curl}\ \vec{v}(x,y) > 0 &\Rightarrow &\text{counter clockwise flow} \ \mathbf{curl}\ \vec{v}(x,y) < 0 &\Rightarrow &\text{clockwise flow} \ \mathbf{curl}\ \vec{v}(x,y) = 0 &\Rightarrow &\text{no rotation} \end{cases} $$ 2D-curl 3-Dimensions $$ \vec{v}(x,y,z) = \begin{bmatrix} f_1(x,y,z) \ f_2(x,y,z) \ f_3(x,y,z) \end{bmatrix} $$ $$\mathbf{curl}\ \vec{v}(x,y,z) = \nabla \times \vec{v}(x,y,z) = \begin{bmatrix} \frac{\partial}{\partial x} \ \frac{\partial}{\partial y} \ \frac{\partial}{\partial z} \end{bmatrix} \times \begin{bmatrix} P(x,y,z) \ Q(x,y,z) \ R(x,y,z) \end{bmatrix} = \det \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \ f_{1} & f_2 & f_3 \end{bmatrix} $$ $$ = \begin{align} \left(\frac{\partial f_{3}}{\partial y} - \frac{\partial f_{2}}{\partial z}\right) i + \left(\frac{\partial f_{1}}{\partial z} - \frac{\partial f_{3}}{\partial x}\right) j + \left(\frac{\partial f_{2}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) k \end{align} $$
Cylindrical Coordinates
Cylinderiske Koordinater Se også Spherical Coordinates. Punkter er givet således $$P = [r, \theta,z]$$ $r$ : Længden fra $z$ aksen. $\theta$ : Vinklen fra $x$ aksen i $xy$ planen. $z$ : Højden Cartesian to Cylindrical Coordinates $$ \begin{align} f(\theta, r, z) &= ( \underbrace{r \cdot \cos \theta }{x}, \underbrace{r \cdot \sin \theta}{y}, \underbrace{ z }_{z} ) \ ||J|| &= r \end{align} $$ Substitutions: $$ \begin{align} x &\rightarrow r \cdot \cos \theta \ y &\rightarrow r \sin \theta \ z &\rightarrow z \ \mathrm{dxdydz} &\rightarrow r \cdot \mathrm{d\theta dr dz} \ x^{2}+y^{2}= a^{2} &\rightarrow r = a \end{align} $$
D Latch
D-Latch (Set-Reset latch) States Gated D-Latch A way to prevent the forbidden state state ($R = 0$ and $S = 0$). When the clock is pulsed, the D-input is stored and output. States for the Gated D-Latch
Data Communication
Data Communication Aspects of Protocols Syntax: The format/structure of the data. Semantics: How the recipient understands the data. Timing: How fast data should be sent or recieved. Protocols are usually organised in layers, as it allows for easier debugging. The bottom layer is always physical, meaning wires, components and their connections. Notes list from #datacommunication sort file.name
Data Link Layer
Framing See slides here and more here. Ways of dividing data into packets for transmission. Character-oriented framing Escape characters are used to send the flag without it being interpreted as a flag by the receiver. Bit-oriented framing Flow and Error Control Protocols See slides. Automatic Repeat reQuest (ARQ) The sender listens for a confirmation packet from the receiver. If it does not receive a confirmation, it simply resends the frame.
DC Amplification
DC Amplification A filters amplification if there is no oscillation on its input. $$\omega = 0, \s z = 1$$
De kinematiske ligninger
De kinematiske ligninger $$ \begin{align} v = v_0 + at \s &\text{undlader: } x - x_0 \ x - x_0 = \frac{1}{2} at^{2}+ v_0t \s &\text{undlader: } v \ v^2 = v_0^2 + 2a(x-x_0) \s &\text{undlader: } t \end{align} $$
Degrees of Freedom
Degrees of Freedom How many directions/angles a joint can move in. To move to any point in space at any rotation 6 degrees of freedom are needed.