Hello there!

My name is Balder and this is my personal website. Here i write down what i learn to maybe help others some day. For now i will just act like people are reading my articles, and make them for fun.

This website has three main sections:

I write these articles for fun, and even though i try to make sure that they are correct, i am not a perfect human and there are sure to be mistakes. Below is a list of most recent articles in all categories.

Recent Posts

About me I am a danish university student studying Robotics at the University of Southern Denmark. Software, robotics, electronics are all incredibly interesting to me, and i therefore spend a lot of time working on small projects here and there. The ones that amount to anything can be found on this website. Links GitHub PYPI LinkedIn About this Website This is a static website built with hugo. I used my custom forked version of the monochrome theme by Kaiiiz.
The Idea
Sqlite Integrated - The Idea I have this past month been developing my first python package! Its called sqlite-integrated in the pypi. Its purpose is to simplify editing sqlite3 databases. Originally is was my intention to represent a database entry simply as a python dictionary. Like this: entry = {"id": 3, "Name": "Tom", "Age": 23} This is nice because it makes it possible to use familiar python dictionary syntax to change the entry.
Abstract Classes in C++
Abstract Classes in C++ A base class which cannot be instantiated by itself. This is accomplished by declarations without definitions in the abstract class. An abstract class has at least one purely virtual method. Purpose: Force all classes that inherits from the abstract class to implement its methods. Used for defining [interfaces](Interfaces in C++). #cpp
AC Alternating Currentl [Phasor Representation](Phasor Representation) Sinusformet signal [Harmoniske svingninger](Harmoniske svingninger) #elektronik
Acceleration af partikler
Acceleration af partikler $$\Delta E_{kin}=q \cdot U_{acc}$$ $\Delta E_{kin}$: Ændringen i kinetisk energi, når partiklen accelereres gennem *hele* spændingsfeltet. $q$: partiklens ladning $U_{acc}$: Accelerationsspændingen #fysik
ADC Analog to Digital converter Resolution ($n$): meaning $2^n$ steps from $0$ V to $V_{ref}$. This also determines the size of the digital output. Conversion time: How long it takes to convert. Use differential inputs to be less sensitive to noise. #microcontrolers
ALU See slides: [Lesson 3.pdf#page=21#page=21](Lesson 3.pdf) A logic circuit where a signal selects the operation the component does to its two inputs. The inputs are usually more that one bit each. #microcontrolers
Amdahl's Law
Amdahl’s Law How much multi-threadding can speed up the execution of a program. $$\text{speedup} \leq \frac{1}{S + \frac{1-S}{N}}$$ $S$: The percentage of the program that can be executed on multiple cores. $N$: Number of cores. #computerarkitecture
Andengradspolynomier Forskrift $$f(x) = ax^2 + bx + c$$ $a$ = hældnings factor (bestemmer også retning af grafen, $a \neq 0$) $b$ = hældningen i $x = 0$ $c$ = skæringspunkt med $y$-aksen Grafen som et andengradspolynomie beskriver kaldes en parabel Toppunktet Punktet hvor hældingen er 0 Formel $$\left( \frac{-b}{2a}, \frac{-d}{4a} \right)$$ Bevis Dette er funktionen for et andengradspolynomium $$f(x) = ax^2+bx+c$$ Vi differentierer $$f'(x)=2ax+b$$ Vi ved at hældningen skal være $0$ i toppunktet, derfor sætter vi $f'(x)$ til $0$ $$0 = 2ax+b$$ Isolerer $x$ $$x=\frac{-b}{2a}$$ Dette er altså toppunktets $x$-koordinat.
Andenordens inhomogene differentialligninger
Andenordens inhomogene differentialligninger $$ay''+by'+cy=f(x)$$ $a, b, c$ : Konstanter. Find Løsningen! Løs den homogene differentialligning. (se [Dæmpede Svingninger - Differentialligning](Dæmpede Svingninger - Differentialligning)) $$ay''+by'+cy=0$$ Kald løsningen $y_h$ Løsningen er nu giver ved $$y=y_h+y_p$$ hvor $y_p$ er den partikulære løsning. Gæt $y_p$ fra kvalificeret gæt. Kvalificerede gæt: $f(x)$ Gæt $P_n(x)$ Et generelt n’te grads polynomium $e^{rx}$ $A \cdot e^{rt}$, $A \in \R$ on konstant $\cos(ax)$ $A \cdot \cos(ax)+B\cdot \sin(ax)$, hvor $A, B \in \R$ og konstante.